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ABSTRACT

We present observations of three-dimensional magnetic power spectra in wavevector space to inves-

tigate the anisotropy and scalings of sub-Alfvénic solar wind turbulence in low-βp plasma at magne-

tohydrodynamic (MHD) scale using the Magnetospheric Multiscale spacecraft. The magnetic power

distributions are organized in a new coordinate determined by wavevectors (k̂) and background mag-

netic field (b̂0) in Fourier space. This study utilizes two approaches to determine wavevectors: the

singular value decomposition method and multi-spacecraft timing analysis. The combination of both

methods allows an examination of magnetic field fluctuation properties in terms of mode compositions

without spatiotemporal hypothesis. Observations show that fluctuations (δB⊥1) in the direction per-

pendicular to k̂ and b̂0 prominently cascade perpendicular to b̂0, and such anisotropy increases with

wavenumbers. The reduced power spectra of δB⊥1 follow Goldreich-Sridhar scalings: P̂ (k⊥) ∝ k
− 5

3

⊥
and P̂ (k‖) ∝ k−2‖ . In contrast, fluctuations within k̂b̂0 plane show isotropic behaviors: perpendicular

power distributions are approximately the same as parallel distributions. The reduced power spectra

of fluctuations within k̂b̂0 plane follow the scalings: P̂ (k⊥) ∝ k
− 3

2

⊥ and P̂ (k‖) ∝ k
− 3

2

‖ . Comparing

frequency-wavevector spectra with theoretical dispersion relations of MHD modes, we find that δB⊥1
are probably associated with Alfvén modes. On the other hand, magnetic field fluctuations within

k̂b̂0 plane more likely originate from fast modes in low-βp plasma based on their isotropic behaviors.

The observations of anisotropy and scalings of different magnetic field components are consistent with

the predictions of current compressible MHD theory. These results are valuable for further studies of

energy compositions of plasma turbulence and their effects on energetic particle transports.

Keywords: Solar wind (1534); Space plasmas (1544); Interplanetary turbulence (830); Interplanetary

magnetic fields (824); Heliosphere (710)

1. INTRODUCTION

Plasma turbulence is typically characterized by a broadband spectrum of perturbations, transmitting energy across

a wide range of spatial and temporal scales (Bruno & Carbone 2013; Verscharen et al. 2019). Plasma turbulence

plays a crucial role in solar corona, solar wind, fusion devices, and interstellar medium (Bruno & Carbone 2013;

Yan & Lazarian 2008). The large-scale behaviors of plasma turbulence, which have been successfully described using
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magnetohydrodynamic (MHD) models, are of particular astrophysical interest (Kraichnan 1965; Goldreich & Sridhar

1995). The solar wind is easily accessed for in situ measurements of fields and particles, providing a unique laboratory

for studying the physics of turbulent plasma observationally (Tu & Marsch 1995; Verscharen et al. 2019). Spacecraft

observations and associated modeling have advanced our understanding of the solar wind in the last decades. However,

turbulent properties and the three-dimensional structure of fluctuations remain unclear due to the limited number

of sampling points and measurement difficulties. Thus, a study of the three-dimensional energy spectrum of the

magnetic field is essential for understanding the dynamics of solar wind turbulence and their effects on energetic

particle transports (Yan & Lazarian 2002, 2004).

Solar wind fluctuations are anisotropic due to the presence of the local interplanetary magnetic field, which has been

suggested in various studies (Matthaeus et al. 1990; Oughton et al. 2015). Satellite observations and simulations have

shown the variance, power, and spectral index anisotropy in magnetic field components parallel and perpendicular

to the field (Cho & Lazarian 2009; Oughton et al. 2015). Firstly, solar wind fluctuations perpendicular to the back-

ground magnetic field (B0) are typically more significant than parallel components, consistent with the dominance

of incompressible Alfvén modes in the solar wind (Bruno & Carbone 2013). Secondly, turbulence energy predomi-

nantly transverses to B0, based on the spatial correlation functions via single and multiple spacecraft measurements

(Matthaeus et al. 1990; He et al. 2011). Thirdly, although solar wind fluctuations are often interpreted as a su-

perposition of fluctuations with quasi-two-dimensional turbulence and a minority slab component, the perpendicular

fluctuations are non-axisymmetric with respect to B0, preferentially, in the direction perpendicular to B0 and the

radial direction (Bruno & Carbone 2013).

Theoretical progress has been achieved to understand the anisotropic behaviors. Goldreich & Sridhar (1995) pre-

dicted that a scale-dependent anisotropy is present in incompressible strong MHD turbulence. The energy spectra of

perpendicular and parallel components are E(k⊥) ∝ k−
5
3

⊥ and E(k‖) ∝ k−2‖ , respectively. k⊥ and k‖ are wavenumbers

perpendicular and parallel to B0, respectively. The smaller turbulent eddies are more elongated along the local mean

magnetic field (Cho & Lazarian 2009; Makwana & Yan 2020). A mechanism called three-wave resonant interaction

also seems to be responsible for the anisotropy of magnetic field fluctuations (Shebalin & Montgomery 1983; Cho &

Lazarian 2002). Furthermore, according to the compressible MHD theory, plasma turbulence can be decomposed into

three eigenmodes (Alfvén, slow, and fast modes) in a stationary, homogeneous, isothermal plasma with a uniform

background magnetic field (Makwana & Yan 2020; Zhao et al. 2021). The mode compositions of the turbulence can

profoundly affect turbulence anisotropy (Yan & Lazarian 2004). Two-order structure functions show that the cascade

of Alfvén and slow modes is anisotropic, preferent in the direction perpendicular to the local magnetic field than in

the parallel direction, whereas fast modes tend to show isotropic cascade (Cho & Lazarian 2003; Makwana & Yan

2020). Moreover, both Alfvén and slow modes follow the Goldreich and Sridhar scalings, whereas fast modes follow

isotropic scalings in low-βp plasma (Cho & Lazarian 2003; Makwana & Yan 2020). Direct evidence from solar wind

observations for the cascade of each mode is still lacking.

To investigate the anisotropy and scalings of solar wind turbulence with respect to magnetic field at MHD scales at

1 au, we calculate three-dimensional power spectra in wavevector space using the Magnetospheric Multiscale (MMS)

spacecraft (Burch et al. 2016). Narita et al. (2010) have tried to obtain three-dimensional energy distributions of

magnetic field fluctuations using the wave telescope technique in an ordinary mean-field-aligned system. Compared

with previous studies, this study organizes the three-dimensional magnetic power distributions in a new coordinate

determined by wavevectors (k̂) and background magnetic field (b̂0) in Fourier space. These measurements allow an

examination of the anisotropy of magnetic field fluctuations in terms of mode compositions. The organization of this

paper is as follows. Section 2 describes datasets, analysis methods, and selection criteria. Section 3 offers observations.

In Sections 4 and 5, we discuss and summarize our results.

2. DATA AND METHODOLOGY

2.1. Data

The study utilizes the magnetic field data from the fluxgate magnetometer (Russell et al. 2016) and the spectrograms

of ion differential energy fluxes from the fast plasma investigation instrument (FPI) (Pollock et al. 2016) onboard MMS.

The resolutions of survey-mode magnetic field measured by MMS are 8 samples/s and/or 16 samples/s. To provide

sufficient time resolution for the timing analysis, we interpolate the magnetic field to a uniform time resolution of

64 samples/s. Due to FPI limitations in measuring plasma moments in the solar wind, proton parameters from

the Operating Missions as a Node on the Internet (OMNI) are used to calculate the proton plasma βp (defined
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as βp = Pp/Pmag; Pp= proton plasma pressure; Pmag= magnetic pressure), proton gyro-frequency fci, and proton

gyro-radius rci.

2.2. Analysis method

The magnetic field observed by four MMS spacecraft consists of the background magnetic field and fluctuating

magnetic field, i.e., B = B0 + δB. The background magnetic field is obtained by averaging the magnetic field within

the defined time window, B0 =< B >. We calculate three-dimensional power spectra of magnetic field fluctuations

with the following steps.

Firstly, the time series of the fluctuating magnetic field is transformed into Fourier space by the Morlet-wavelet

transforms (Grinsted et al. 2004). We obtain wavelet coefficients of three components of the fluctuating magnetic field,

i.e., WBX,GSE
(fsc, t), WBY,GSE

(fsc, t), and WBZ,GSE
(fsc, t) at each time t and spacecraft-frame frequency (fsc), where

the subscript GSE represents the geocentric-solar-ecliptic coordinates. We utilize the intervals with twice the length

of the studied period to eliminate the edge effect due to finite-length time series and cut off the affected periods.

Secondly, we calculate unit wavevectors k̂(fsc, t) = k
|k| using the singular value decomposition (SVD) of the magnetic

spectral matrix (Santoĺık et al. 2003; Zhao et al. 2021). The SVD technique provides a mathematical method to solve

the linearized Gauss’s law for magnetism (k · δB = 0) that states a divergence-free constraint of magnetic field vectors.

The complex matrices of δB in this study are expressed as the wavelet coefficients. The wavevectors k̂ are calculated

by SVD method with 32 s resolution, since we find that the wavevectors of low-frequency fluctuations are relatively

stationary with varying time resolution.

Thirdly, since MMS spacecraft relative separations are much smaller than the half-wavelength at MHD scales,

the properties and propagations of fluctuations from simultaneous measurements by four MMS spacecraft are ap-

proximately similar. The wavevectors and background magnetic field are averaged over four spacecraft: k =
1
4 (k̂M1 + k̂M2 + k̂M3 + k̂M4) and B0 = 1

4 (B0,M1 + B0,M2 + B0,M3 + B0,M4), where M1, M2, M3, and M4 de-

note the four MMS spacecraft. We build a new coordinate in Fourier space using the unit vectors of the wavevectors

and background magnetic field (k̂ = k
|k| and b̂0 = B0

|B0| ) at each time t and fsc, where the basis vectors of coordinate

axes e||, e⊥1, and e⊥2 are in b̂0, k̂ × b̂0, and b̂0 × (k̂× b̂0) directions, respectively. Then, wavelet coefficients are

transformed into the new coordinate: WB||(t, fsc), WB⊥1
(t, fsc), and WB⊥2

(t, fsc).

Fourthly, four MMS spacecraft provide six cross correlations for the magnetic field, i.e., W 12
Bl

= 〈WBl,M1W
∗
Bl,M2〉,

W 13
Bl

= 〈WBl,M1W
∗
Bl,M3〉, W 14

Bl
= 〈WBl,M1W

∗
Bl,M4〉, W 23

Bl
= 〈WBl,M2W

∗
Bl,M3〉, W 24

Bl
= 〈WBl,M2W

∗
Bl,M4〉, W 34

Bl
=

〈WBl,M3W
∗
Bl,M4〉 (Grinsted et al. 2004), where the angular brackets denote time averaging over 32 s for each fsc, and

the subscript l represents e||, e⊥1, and e⊥2, respectively. We calculate wavevectors kl(t, fsc) employing the multi-

spacecraft timing analysis based on phase differences between the fluctuating magnetic field (with a time resolution of

64 samples/s) measured by four spacecraft.

Fifthly, wavelet power spectra of the magnetic field averaged over four spacecraft at each time t and fsc in component

l are given by

PBl
(t, fsc) =

1

4
(WBl,M1W

∗
Bl,M1 +WBl,M2W

∗
Bl,M2 +WBl,M3W

∗
Bl,M3 +WBl,M4W

∗
Bl,M4) (1)

Combining PBl
(t, fsc) and kl(t, fsc), we obtain frequency-wavenumber power spectra of magnetic field fluctuations

PBl
(kl, fsc) in the spacecraft frame.

Finally, the magnetic power spectra are transformed into the rest frame of the solar wind by correcting the Doppler

shift. The frequency in the rest frame of the solar wind can be obtained by frest = fsc − (k · V/2π). Compared

to the solar wind flow, four spacecraft are approximately stationary. Thus, V is roughly equivalent to the solar

wind speed. This study exploits the representation of absolute frequencies: (frest,kl) = (frest,kl) for frest > 0, and

(frest,kl) = (−frest,−kl) for frest < 0.

2.3. selection criteria

We search for events that satisfy the following criteria: (1) The spectrograms of differential energy fluxes show no

evidence of high-energy reflected ions from the terrestrial bow shock, suggesting that fluctuations are in the free solar

wind without the effects of the ion foreshock. (2) The magnetic field is devoid of strong gradients, discontinuities,

and reversals, guaranteeing that plasma can be considered homogenous. (3) The relative amplitudes of magnetic field

fluctuations, defined as δBrms/|B0| =
√
〈|B(t)− 〈B(t)〉|2〉/|〈B(t)〉|, are much less than 1. Under such a condition,
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the nonlinear term (δB2) is much less than the linear term (B0 · δB), and thus fluctuations can roughly be considered

as a pure superposition of linear modes. (4) Multi-spacecraft methods are sensitive to scales comparable to spacecraft

separations and show limitations on much larger and smaller scales (Horbury et al. 2012). In this study, the space-

craft separations are roughly as large as the ion gyro-radius. Therefore, given the applicability of MHD theory and

measurement limitation, we only analyze fluctuations within 2/t∗ < frest < fci and 0.01 < krci < 0.1, and set the

magnetic power to zero out of this range. The parameter t∗ is the duration studied.

The only other criterion used is the requirement that the angle φk̂kl between k̂ (obtained by SVD method) and kl

(obtained by timing analysis) should be small. Typically, when analyzing solar wind data via single spacecraft, we

assume fsc ∝ k based on Taylor’s hypothesis (Taylor 1938) for a given wave propagation angle θkB0
. This approximation

is considered reliable mainly because the velocity of the solar wind flow (Vsw) is much larger than phase speeds of

MHD waves. However, the approximation does not always hold even though Vsw is much faster than the phase speed

of fluctuations, e.g., when fluctuations with wavevectors at large angles from the solar wind flow. Therefore, this study

utilizes two methods for accuracy to identify the propagation directions, i.e., the SVD method and multi-spacecraft

timing analysis (described in Section 2.2). The latter method allows determining wavevectors independent of any

spatiotemporal hypothesis. Our results show that data counts are primarily concentrated in φk̂kl < 30◦, whereas a

small number of counts still exist in large-φk̂kl range. It indicates that not all fluctuations are aligned with the direction

of minimum variance vectors of magnetic field fluctuations and satisfy fsc ∝ k hypothesis (because the fluctuations are

combinations of multiple modes with different dispersion relations). Therefore, we filter out fluctuations with a large

φk̂kl , which invalidates the SVD assumption. This part of fluctuations is beyond the scope of the present paper and

will be the topic of a separate publication. Considering that the fluctuating magnetic field (δB⊥1) out of k̂b̂0 plane

dominates magnetic power (∼ 80%), the propagation direction of δB⊥1 should be mainly aligned with k̂, whereas

fluctuations within k̂b̂0 plane accounting for a tiny proportion have little impact on the direction of k̂. Therefore,

this study sets a more stringent criterion φk̂kl < 10◦ for δB⊥1 fluctuations and a moderate criterion φk̂kl < 30◦ for

fluctuations within k̂b̂0 plane.

This study presents three representative events in low-βp solar wind, and their properties are listed in Table 1. These

three events are also included in the appendix by Roberts et al. (2020). During these intervals, four spacecraft have a

1-minute time shift from the nose of the terrestrial bow shock, suggesting approximately the same plasma environment

observed by MMS and OMNI. Meanwhile, the qualities of MMS tetrahedral configuration are around 0.9, allowing for

distinguishing spatial and temporal evolutions and investigating three-dimensional structures of fluctuations.

3. OBSERVATIONS

An overview of three representative events of solar wind fluctuations is shown in Figure 1. For all three events,

the magnetic field and plasma parameters are stationary. Figures 1c, 1i, and 1o show the relative amplitudes of the

magnetic field δBrms/|B0| =
√
〈|B(t)− 〈B(t)〉|2〉/|〈B(t)〉|, where the angular brackets denote a time average over 10,

20, and 30 minutes, respectively. δBrms/|B0| are much less than 1, indicating that the nonlinear term (δB2) is much

less than the linear term (B0 · δB). Thus, it is valid that fluctuations are considered as a pure superposition of linear

MHD modes. Figure 2 shows MMS locations and the directions of the background magnetic field in GSE coordinates

for Event 1, Event 2, and Event 3, respectively. As shown in Figure 2, theoretically, the mean magnetic field is either

not connected to terrestrial bow shock or nearly tangential to it. Indeed, the spectrograms of ion differential energy

fluxes show no evidence of high-energy reflected ions (Figures 1d, 1j, and 1p). Thus, these intervals are free from ion

foreshock contaminations. Figures 1e, 1k, and 1q show that three events are in low-βp solar wind, where proton plasma

βp is calculated by OMNI proton parameters and MMS magnetic field. In Figures 1f, 1l, and 1r, wave propagation

angles with respect to the background magnetic field 〈B(t)〉30min (average over 30 minutes) cover 0◦ to 90◦, allowing

us to calculate the magnetic power distribution in wavevector space more reliable.

The solar wind fluctuations are closely related to the local background magnetic field. This study explores the

variation of the magnetic power distributions with the background magnetic field by adjusting the length of time

windows. We split the time intervals of these three events into several moving time windows with a step size of 5

minutes and a length of 10, 20, and 30 minutes, respectively. This study refers to them as 10-minute, 20-minute, and

30-minute datasets. We calculate the background magnetic field (B0) by averaging the magnetic field in each time

window. In this way, B0 in each time window is constant in time and along the same direction in both real and Fourier

space, suggesting that the new coordinate determined by B0 is independent of the space transformation.
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Figure 1. An overview of solar wind fluctuations from MMS1 and OMNI. (a-f) Event 1: during 23:00-02:00 UT on 2017
November 23-24. (g-l) Event 2: during 21:00-23:00 UT on 2017 November 26. (m-r) Event 3: during 20:15-22:15 UT 2017
November 14. The panels from top to bottom show the magnetic field magnitude |B|, magnetic field components in GSE, relative
amplitudes of the magnetic field δBrms/|B0|, the spectrogram of ion differential energy fluxes (keV cm−2s−1sr−1keV −1), proton
plasma βp, wave propagation angles with respect to the background magnetic field.

To investigate the reliability of employing observational three-dimensional power distributions to describe the struc-

ture of solar wind turbulence, we calculate the normalized two-point correlation function R(τ)/R(0), where R(τ) is

defined as 〈δB(t)δB(t + τ)〉, and τ is the timescale. The results of the three events are similar, and we take Event 1

as an example. Figure 3 shows the normalized two-point correlation function of datasets with a window length of 10,

20, and 30 minutes, respectively. Different time windows (black curves) with a step size of 5 minutes present a similar

profile of R(τ)/R(0), indicating that the correlation function is independent of the starting time; thus, fluctuations

are in a homogeneous plasma. Moreover, when well-behaved turbulence becomes uncorrelated (R(τ)/R(0) → 0), the

average values of τ are around 160 s, 280 s, and 370 s, respectively. Therefore, the measured correlation time Tc,

estimated by Tc =
∫ R(τ)→0

0
R(τ)/R(0)dτ is much less than the window length. As a result, it is reliable to assume

that turbulent magnetic field fluctuations are stationary and homogeneous (Matthaeus & Goldstein 1982).

We perform the approaches described in Section 2.2 to calculate three-dimensional frequency-wavenumber magnetic

power spectra in the spacecraft frame. Then we transform the magnetic power spectra into the rest frame of the

solar wind by correcting the Doppler shift. To obtain k⊥ − k|| wavelet power spectra of magnetic field fluctuations,

we construct a set of 100×100 bins, where k|| represents wavenumber parallel to the background magnetic field (B0),

and k⊥ =
√

(k2⊥1 + k2⊥2) represents wavenumber perpendicular to B0. Each bin subtends approximately the same

perpendicular and parallel wavenumber. We sum all magnetic power in each bin at all frequencies and times. To cover

all MHD-scale wavenumbers, we set the maximum wavenumber as kmax = k⊥,max = k||,max = 1.1× 0.1
rci

, and the step

length of each bin is dk = kmax/100.

3.1. The results of δB⊥1 fluctuations

Figure 4 shows k⊥ − k|| wavelet power spectra of magnetic field fluctuations (δB⊥1) out of k̂b̂0 plane using

datasets with a length of 10, 20, and 30 minutes, respectively. The magnetic power spectra P̂B⊥1
(k⊥, k||) =

PB⊥1
(k⊥, k||)/PB⊥1,max

are normalized by the maximum power in all bins. From top to bottom, Figures 4a-4c, 4d-4f,

and 4g-4i display magnetic power spectra of Event 1, Event 2, and Event 3, respectively. For all events, magnetic

power distributions prominently elongate perpendicular to the background magnetic field, indicating a faster cascade

in the perpendicular direction. Moreover, we observe an apparent scale-dependent anisotropy: magnetic power spectra
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Figure 2. A schematic of MMS locations in GSE coordinates. Blue and red solid curves represent the empirical models of
terrestrial bow shock (Peredo et al. 1995) and magnetopause (Roelof & Sibeck 1993). The black, red, and blue arrows represent
the directions of the background magnetic field for Event 1 ([17, 18, 6]RE), Event 2 ([17, 17, 6]RE), and Event 3 ([17, 17, 6]RE),
respectively.

Figure 3. Normalized correlation function R(τ)/R(0) vs. timescale τ for magnetic field ZGSE-component with a window length
of 10, 20, and 30 minutes, respectively, using Event 1 datasets measured by MMS1. The black curves represent the normalized
correlation function of each window. The red curves and yellow shaded regions represent average R(τ)/R(0) and standard errors
over all windows, respectively. The horizontal solid lines mark R(τ)/R(0) = 0.

are more stretched along the background magnetic field as the wavenumber increases. Besides, magnetic power spectra

show more isotropic behaviors as the window length increases.
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Figure 4. k⊥ − k|| wavelet power spectra of magnetic field fluctuations (δB⊥1 out of k̂b̂0 plane using datasets with a length

of 10, 20, and 30 minutes, respectively. The magnetic power spectra P̂B⊥1(k⊥, k||) = PB⊥1(k⊥, k||)/PB⊥1,max are normalized
by the maximum power in all bins. (a-c) Event 1: during 23:00-02:00 UT on 2017 November 23-24. (d-f) Event 2: during
21:00-23:00 UT on 2017 November 26. (g-i) Event 3: during 20:15-22:15 UT 2017 November 14. The blue dashed curves mark

k =
√
k2|| + k2⊥ = 0.03/rci, 0.05/rci, and 0.1/rci, respectively.

To quantitively analyze these properties of magnetic power spectra, we obtain the one-dimensional reduced magnetic

power spectra of δB⊥1 by

P̂B⊥1
(k⊥) =

∫∞
0
P̂B⊥1

(k⊥, k||)dk|| ∼
∫ kmax

k||,min
P̂B⊥1

(k⊥, k||)dk|| (2)

P̂B⊥1
(k||) =

∫∞
0
P̂B⊥1

(k⊥, k||)dk⊥ ∼
∫ kmax

k⊥,min
P̂B⊥1

(k⊥, k||)dk⊥ (3)



8 Zhao et al.

The parallel wavenumber can be expressed as k|| ∝ k
2
3

⊥/l
1
3
0 , where l0 is the injection scale (approximately equivalent to

the correlation length in this study) (Yan & Lazarian 2008). Here, take Event 1 as an example to estimate the minimum

wavenumbers. Given δV/VA can be roughly expressed as δB/B0 for incompressible fluctuations, velocity fluctuations

δV are around 15 km/s, where Alfvén velocity VA ∼ 50 km/s and δB/B0 ∼ 〈δBrms/|B|〉30min ∼ 0.3. The correlation

time Tc stabilizes at around 400 s, even though using longer time windows (larger than 30 minutes). Thus, the

correlation length is around 6000 km. If we assume the minimum perpendicular wavenumber k⊥,min ∼ 0.01
rci
∼ 3×10−4

km−1(rci ∼ 31.8 km), the minimum parallel wavenumber is k||,min ∼ 2.5 × 10−4 km−1 ∼ k⊥,min. The calculations

can be confirmed by the relationship between k⊥ and k|| at the small wavenumbers in Figure 10d.

Figure 5. The reduced power spectra of δB⊥1 fluctuations using 30-minute datasets. Blue curve P̂ (k⊥): normalized per-
pendicular wavenumber spectrum of δB⊥1 fluctuations; green curve P̂ (k||): normalized parallel wavenumber spectrum of δB⊥1

fluctuations; black dashed line: power-law fits. (a, d) Event 1: during 23:00-02:00 UT on 2017 November 23-24. (b, e) Event 2:
during 21:00-23:00 UT on 2017 November 26. (c, f) Event 3: during 20:15-22:15 UT 2017 November 14.

It is challenging to quantitively present magnetic power distributions in wavevector space through limited measure-

ments. However, the longer interval we choose, the observed power spectra are closer to actual distributions. Thus, we

present reduced power spectra of δB⊥1 fluctuations using 30-minute datasets, although shorter datasets show similar

behaviors. Figures 5a-5c show that the normalized perpendicular wavenumber spectra of δB⊥1 fluctuations roughly

follow a Kolmogorov spectrum: P̂ (k⊥) ∝ k
− 5

3

⊥ . Figures 5d-5f show that the normalized parallel wavenumber spectra

of δB⊥1 fluctuations roughly follow P̂ (k||) ∝ k−2|| . These scalings are consistent with the Goldreich & Sridhar (1995)

theory. For event 1 (3 hours measurements), magnetic power distributions almost follow the Goldreich & Sridhar

(1995) scalings from k|| ∼ [4 × 10−4, 1.5 × 10−3] km−1 (corresponding wavenumber relations are shown in Figure

10d). However, for Events 2 and 3 (2 hours measurements), magnetic power distributions satisfy the scale-dependence

scaling only at partial wavenumbers. Besides, their power-law fits are easily affected by the wavenumber ranges, likely

because of the incomplete results from the limited-time series.



9

Figure 6. The ratio P̂ (k⊥) to P̂ (k||) of δB⊥1 fluctuations. P̂ (k⊥) represents the normalized perpendicular wavenumber

spectrum of δB⊥1, and P̂ (k||) represents the normalized parallel wavenumber spectrum of δB⊥1. (a) Event 1: during 23:00-
02:00 UT on 2017 November 23-24. (b) Event 2: during 21:00-23:00 UT on 2017 November 26. (c) Event 3: during 20:15-22:15
UT 2017 November 14.

To investigate the anisotropy of magnetic power spectra of δB⊥1 fluctuations, we show the ratio P̂ (k⊥) to P̂ (k||) in

Figure 6. Firstly, the ratios P̂ (k⊥) to P̂ (k||) are much larger than 1 at most wavenumbers, indicating that magnetic

field distributions are stretched along the background magnetic field. Secondly, almost all datasets show a similar

tendency that the ratio P̂ (k⊥) to P̂ (k||) increases with the wavenumbers, especially for k > 5×10−4 km−1, suggesting

that the anisotropy of magnetic power spectra increases with the wavenumbers. This result is consistent with sim-

ulation results: the smaller eddies are more stretched along the background magnetic field (Makwana & Yan 2020).

Thirdly, the ratios P̂ (k⊥) to P̂ (k||) obtained by 10-minute (blue) and 20-minute (green) datasets are larger than those

obtained by 30-minute datasets (yellow) at most wavenumbers, especially for k > 5× 10−4 km−1. It means that the

anisotropy decreases when we use the longer time windows to calculate the background magnetic field. Therefore,

these observations provide evidence that solar wind fluctuations are more likely aligned with the local magnetic field

based on the size of the fluctuations rather than a global magnetic field.

3.2. The results of fluctuations within k̂b̂0 plane

The magnetic field fluctuations within k̂b̂0 plane are composed by δB|| and δB⊥2 components, where δB|| represents

magnetic field fluctuations parallel to B0, and δB⊥2 represents fluctuations perpendicular to B0 and within k̂b̂0 plane.

Based on the ideal MHD theory, this part of magnetic field fluctuations is provided by compressible magnetosonic

modes. Figure 7 presents the sum of k⊥−k|| wavelet power spectra of δB|| and δB⊥2 fluctuations, which are normalized

by the maximum power in all bins (P̂Bink̂b̂plane
(k⊥, k||) = (PB||(k⊥, k||)+PB⊥2

(k⊥, k||))/(PB||+PB⊥2
)max). Since these

sub-Alfvénic fluctuations within k̂b̂0 plane only occupy a tiny part of total magnetic power (∼ 20%), magnetic power

cannot cover all wavenumbers. Thus, many vacant bins are present in Figure 7. Nevertheless, magnetic power spectra

within k̂b̂0 plane still show explicit isotropic behaviors: the perpendicular magnetic power distributions are comparable

to those in the parallel direction.

We calculate one-dimensional reduced power spectra of magnetic field fluctuations within k̂b̂0 plane by Equations

(2) and (3) for in-plane components using 30-minute datasets. Although the reliability of quantitative analysis is ques-

tionable, the normalized perpendicular wavenumber spectra P̂ (k⊥) are roughly comparable to the parallel wavenumber

spectra P̂ (k||) ) (Figure 8), and the ratios P̂ (k⊥) to P̂ (k||) are around 1 (Figure 9). Therefore, the isotropic behaviors

are independent of the wavenumbers. Moreover, the reduced power spectra follow a similar scaling P̂ (k⊥) ∝ k−
3
2

⊥ and

P̂ (k||) ∝ k
− 3

2

|| in Figure 8. The isotropic scalings are consistent with fast-mode scalings in low-βp plasma (Cho &

Lazarian 2003; Makwana & Yan 2020).

4. FURTHER ANALYSIS ON MHD MODES
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Figure 7. k⊥− k|| wavelet power spectra of magnetic field fluctuations within k̂b̂0 plane using datasets with a length of 10, 20,

and 30 minutes, respectively. The magnetic power spectra P̂B
ink̂b̂plane

(k⊥, k||) = (PB||(k⊥, k||)+PB⊥2(k⊥, k||))/(PB||+PB⊥2)max

are normalized by the maximum power in all bins. (a-c) Event 1: during 23:00-02:00 UT on 2017 November 23-24. (d-f) Event
2: during 21:00-23:00 UT on 2017 November 26. (g-i) Event 3: during 20:15-22:15 UT 2017 November 14. The blue dashed
curves represent k = 0.03/rci, 0.05/rci, and 0.1/rci, respectively.

The primary goal of this study is to investigate the anisotropy and scalings of sub-Alfvénic solar wind turbulence in

low-βp limits at 1 au. We present three representative events of three-dimensional magnetic power spectra in wavevector

space using MMS observations. The magnetic power spectra are organized in a new coordinate determined by k̂ and

b̂0 in Fourier space, as described in Section 2.2. This study utilizes two approaches to determine wavevectors: the

singular value decomposition method and multi-spacecraft timing analysis. The combination of both methods allows

an examination of the properties of magnetic field fluctuations in terms of mode compositions independent of any



11

Figure 8. The reduced power spectra of magnetic field fluctuations within k̂b̂0 plane using 30-minute datasets. Blue curve
P̂ (k⊥): perpendicular wavenumber spectrum; green curve P̂ (k||): parallel wavenumber spectrum; black dashed lines: power-law
fits. (a,d) Event 1: during 23:00-02:00 UT on 2017 November 23-24. (b,e) Event 2: during 21:00-23:00 UT on 2017 November
26. (c,f) Event 3: during 20:15-22:15 UT 2017 November 14.

Figure 9. The ratio P̂ (k⊥) to P̂ (k||) of fluctuations within k̂b̂0 plane. P̂ (k⊥) represents the normalized perpendicular wavenum-

ber spectrum, and P̂ (k||) represents the normalized parallel wavenumber spectrum. (a) Event 1: during 23:00-02:00 UT on
2017 November 23-24. (b) Event 2: during 21:00-23:00 UT on 2017 November 26. (c) Event 3: during 20:15-22:15 UT 2017
November 14.

spatiotemporal hypothesis. We propose a possible physical explanation of our observations by taking the 30-minute

dataset of Event 1 as an example.
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4.1. δB⊥1 fluctuations and Alfvén modes

Figure 10. (a) The normalized frest − k|| wavelet power spectra of δB⊥1 fluctuations in the rest frame of the solar wind.

P̂B⊥1(k||, frest) = PB⊥1(k||, frest)/PB⊥1,max(k||, frest). (b) The normalized theoretical dispersion relation of Alfvén modes.

P̂B⊥1(k||, fAlfven) = PB⊥1(k||, fAlfven)/PB⊥1,max(k||, fAlfven). (c) Collision number N versus k||. The horizontal dashed line
marks N = 1. (d) The variation of k⊥ versus k|| for magnetic power of δB⊥1 fluctuations (blue curve). The green dashed line

represents isotropy k|| = k⊥. The red dashed line represents the Goldreich-Sridhar scaling k|| ∝ k
2
3
⊥ . These figures use the

30-minute dataset of Event 1.

The frequency frest is obtained by correcting the Doppler shift frest = fsc − k ·V/2π, where frest represents the

frequency in the rest frame of the solar wind, and fsc represents the frequency in the spacecraft frame. Considering

that the SVD method only determines the propagation direction (k̂), we calculate frest using wavevectors kl derived

from timing analysis of δB⊥1 fluctuations. Thus, kl can be expressed as kδB⊥1
here. Although we set a stringent

criterion φk̂kl < 10◦ for δB⊥1 fluctuations in section 2.3, kδB⊥1
deviates from the direction of minimum variance

vectors of magnetic field fluctuations (k̂), resulting in a frest uncertainty range between |fsc − |k||Vsw|cos(θkVsw−10
◦)

2π |
and |fsc− |k||Vsw|cos(θkVsw+10◦)

2π |. It is challenging to correct frest uncertainties because φk̂kl varies with the time t and

fsc. To simplify, frest uncertainties are corrected with uniform angles between −10◦ and 10◦. The distribution trend

will not change when we change the correction angle; thus, our main conclusions are solid.

Figure 10a presents frest − k|| power spectra of δB⊥1 in the rest frame of the solar wind after a uniform error

correction (φk̂kl = 10◦). P̂B⊥1
(k||, frest) = PB⊥1

(k||, frest)/PB⊥1,max
(k||, frest) is normalized by the maximum power in

all bins. The magnetic power shows no clear linear relation between the frequency (frest) and parallel wavenumber (k||)
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at k|| < 5×10−4 km−1. However, a branch of an apparent linear power enhancement exists at 5×10−4 < k|| < 1.5×10−3

km−1.

Based on the compressible MHD theory, δB⊥1 components of magnetic field fluctuations in the direction perpen-

dicular to k̂ and b̂0 are expected to consist of Alfvén modes. To further understand magnetic power distributions out

of k̂b̂0 plane, we first compare frest − k|| power spectra of δB⊥1 fluctuations with Alfvén-mode theoretical dispersion

relations. The theoretical frequencies of Alfvén modes are given by

ω2
A(k||) = k2||V

2
A (4)

where VA is the Alfvén speed. In Figure 10b, we assume that magnetic power is totally provided by Alfvén modes.

The theoretical dispersion relation of Alfvén modes is roughly consistent with the apparent linear enhanced branch

of magnetic power (Figure 10a). This result provides direct observational evidence that this part of fluctuations may

originate from Alfvén modes. It is noteworthy that frest are slightly higher than theoretical Alfvén frequencies if we

do not correct the uncertainty resulting from φk̂kl . Comparing observations with the theoretical dispersion relations,

we obtain the best match with the error correction φk̂kl = 10◦.

To further understand the fluctuations without apparent linear relations between the frequency (frest) and parallel

wavenumber (k||) at k|| < 5× 10−4 km−1, we calculate the collision number defined as N = ( τnl

τA
)2 = (VAl⊥

vll||
)2, where

τnl = l⊥
vl

represents the nonlinear interaction time, τA = VA/l|| represents the linear interaction time, vl represents

perpendicular velocity fluctuations, and l⊥(l||) represents perpendicular (parallel) length scale. The strength of the

nonlinear effects can be estimated by the collision number. Therefore, turbulence can be typically divided into weak

(N � 1) and strong (N >∼ 1) turbulence regimes. When we analyze magnetic field fluctuations out of k̂b̂0 plane

(δB⊥1), the collision number can be approximately expressed as N ∼ (VAl⊥
vll||

)2 ∼ ( B0l⊥
δB⊥1l||

)2. Figure 10c shows collision

number N versus k||. We summarize the comparisons between frest − k|| spectra and collision numbers as follows:

(1) At k|| < 5 × 10−4 km−1, the collision number is very close to 1 (Figure 10c), suggesting strong turbulence. At

approximately the same wavenumbers, no clear relation between frest and k|| exists (Figure 10a). It is likely because the

fast decay of turbulence within one wave period prevents Alfvén wave to propagate. (2) At 5×10−4 < k|| < 1.5×10−3

km−1, the collision number becomes slightly larger than 1 (Figure 10c), suggesting that turbulence becomes relatively

weaker. It may be because some physical dissipation mechanisms diminish the turbulent amplitudes, leading to

weaker nonlinear dynamics (Howes et al. 2011). Therefore, at approximately the same wavenumbers, apparent linear

enhancements of magnetic power are observed in Figure 10a. Noteworthily, we deduce that the turbulence is still in

the strong regime because the weak turbulence regime needs more collisions (N � 1) than what we observed. (3)

At k|| > 1.5× 10−3 km−1, the calculated collision number is of no physical meaning due to the limited data samples

(Figure 10a).

In Section 3.1, we have shown that the reduced wavenumber spectra of δB⊥1 fluctuations roughly follow the scalings:

P̂ (k⊥) ∝ k
− 5

3

⊥ and P̂ (k||) ∝ k−2|| , consistent with the Goldreich & Sridhar (1995) theory. To obtain a more intuitive

wavenumber relationship, we extract the relation of k⊥ versus k|| by taking the same values of the magnetic power

spectrum at k⊥ and k|| axes. Figure 10d shows the variation of k⊥ versus k|| for magnetic power of δB⊥1 fluctuations

(blue curve). The green dashed line represents isotropy k|| = k⊥ , and the red dashed line denotes the Goldreich-Sridhar

scaling k|| ∝ k
2
3

⊥. At wavenumber k|| < 1.1 × 10−3 km−1 (k⊥ < 1.5 × 10−3 km−1), the observed variation of k⊥ and

k|| follows the Goldreich-Sridhar scaling k|| ∝ k
2
3

⊥/l
1
3
0 , with the normalization consistent with the correlation length l0

obtained in section 3.1. The collision number N is close to 1 at almost the same parallel wavenumber k|| < 1.1× 10−3

km−1 (Figure 10c). Therefore, our observations provide direct evidence for the validity of the Goldreich-Sridhar scaling

in the solar wind.

4.2. Fluctuations within k̂b̂0 plane and magnetosonic modes

Given that the magnetic power within k̂b̂0 plane only plays a limited role, the reliability of quantitative analysis

is questionable. Besides, it is more difficult to uniformly correct frest uncertainties resulting from φk̂kl , because we

set a more relaxed criterion φk̂kl < 30◦ for in-plane fluctuations in order to obtain enough samplings. Therefore,

magnetic field fluctuations within k̂b̂0 plane are only discussed qualitatively. Figure 11a shows frest−k|| power spectra

of magnetic field fluctuations within k̂b̂0 plane in the rest frame of the solar wind without any angle correction for

frest. P̂ink̂b̂0plane(k||, frest) = Pink̂b̂0plane(k||, frest)/Pink̂b̂0plane,max(k||, frest) is normalized by the maximum power in
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Figure 11. (a) Normalized frest − k|| wavelet power spectra of magnetic field fluctuations within k̂b̂0 plane in the rest

frame of the solar wind. P̂ink̂b̂0plane(k||, frest) = Pink̂b̂0plane(k||, frest)/Pink̂b̂0plane,max(k||, frest) (b) The normalized theoretical

dispersion relation of fast and slow modes, where P̂ink̂b̂0plane(k||, ffast) = Pink̂b̂0plane(k||, ffast)/Pink̂b̂0plane,max(k||, ffast) and

P̂ink̂b̂0plane(k||, fslow) = Pink̂b̂0plane(k||, fslow)/Pink̂b̂0plane,max(k||, fslow). These figures use the 30-minute dataset of Event 1.

all bins. The magnetic power is concentrated in k|| < 1 × 10−3 km−1 and shows no clear relationship between frest
and k||.

According to the ideal MHD theory, magnetic field fluctuations within k̂b̂0 plane are most likely provided by com-

pressible magnetosonic modes (fast and slow modes). The theoretical frequencies of fast and slow modes are given

by

ω2
F,S(k) = k2V 2

A[
1 + βp

2
±
√

(1 + βp)2

4
− βp(

k||

k
)2] (5)

where k =
√
k2|| + k2⊥ is the wavenumber, and k|| is the parallel wavenumber to B0. In Figure 11b, we assume

that magnetic power spectra are totally provided by fast or slow modes, respectively. Since θkB0 between k̂ and b̂0

varies with wavenumbers, fast modes do not show linear dispersion relations (Figure 11b). Given the relatively large

uncertainties in frest, we only focus on the parallel wavenumber distributions of the magnetic power within k̂b̂0 plane.

If only fast modes exist, fast-mode magnetic power would roughly cover the wavenumber distributions of the observed

magnetic power (k|| < 1 × 10−3 km−1) in Figure 11a. However, if there are only slow modes within k̂b̂0 plane, the

magnetic power would be concentrated in larger parallel wavenumbers (k|| > 7×10−4 km−1) than actual observations.

Overall, it is difficult to identify mode compositions of the fluctuations by comparing the disordered distributions with

theoretical dispersion relations.

When assuming the fluctuating velocity vAlfven ∼ vslow ∼ vfast ∼ VA in low-βp plasma, the relationship of magnetic

fluctuations between fast and slow mode can be expressed as ( δBB0
)slow =

√
βp(

δB
B0

)fast (Cho & Lazarian 2003).

Therefore, fast modes theoretically provide more magnetic field fluctuations than slow modes in low-βp plasma (Zhao

et al. 2021). For all events studied, the proton plasma βp is ∼ 0.3, in accord with low-βp limits. Moreover, our

observations show that magnetic field fluctuations within k̂b̂0 plane show isotropic behaviors and follow scalings

P̂ (k⊥) ∝ k
− 3

2

⊥ and P̂ (k||) ∝ k
− 3

2

|| , consistent with the isotropy and scalings of fast modes (Cho & Lazarian 2002;

Makwana & Yan 2020). Therefore, indirectly we deduce that magnetic field fluctuations within k̂b̂0 plane more likely

originate from fast modes. Quantitative analysis for compressible fluctuations will be the subject of our future studies.

5. SUMMARY
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This study presents observations of three-dimensional magnetic power spectra in wavevector space to investigate

the anisotropy and scalings of sub-Alfvénic solar wind turbulence in low-βp plasma at the MHD scale using the MMS

spacecraft. The specifics of our findings are summarized below.

1. The magnetic field fluctuations (δB⊥1) in the direction perpendicular to k̂ and b̂0 are prominently stretched

perpendicular to b̂0, indicating a faster cascade in the perpendicular direction. Moreover, such anisotropy

increases as the wavenumber increases. The reduced power spectra of δB⊥1 fluctuations follow the Goldreich-

Sridhar scalings: P̂ (k⊥) ∝ k−
5
3

⊥ and P̂ (k||) ∝ k−2|| . δB⊥1 fluctuations are more anisotropic using a shorter-interval

average magnetic field, suggesting fluctuations are more likely aligned with the local magnetic field than a global

magnetic field.

2. The magnetic field fluctuations (δB||+δB⊥2) within k̂b̂0 plane show isotropic behaviors: the perpendicular power

distributions are roughly comparable to parallel distributions. The reduced magnetic power spectra within k̂b̂0

plane follow the scalings: P̂ (k⊥) ∝ k−
3
2

⊥ and P̂ (k||) ∝ k
− 3

2

|| .

3. Comparing observational frequency-wavevector spectra in the rest frame of the solar wind with theoretical dis-

persion relations of MHD modes, we find that δB⊥1 fluctuations are consistent with Alfvén modes. In contrast,

we deduce that the magnetic field fluctuations within k̂b̂0 plane more likely originate from fast modes in low-βp
plasma based on their isotropic behaviors and scalings.

4. We estimated the number (N) of wave packets collisions needed to induce the turbulence cascade. We provide

direct observational evidence for the scale-dependent anisotropy from the Goldreich-Sridhar model in the scale

range where the critical balance (N >∼ 1) holds.
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